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In this work, the morphology of a liquid bridge in a slit pore geometry was investigated as a
function of both the bridge height and aspect ratio (height/width). The end contour interface
of the liquid bridge was modeled by using a saddle shape, and the liquid-air interface was
described via an arc of a circle. By employing the free energy approach, a simple formula was
obtained to predict variation of the pinning angle as a function of the distance between the
slits. The pinning angle depended on the liquid volume and on both the wetting properties
and the geometry of the system (height and width). The critical aspect ratio at which the
liquid bridge meniscus transitioned from concave to convex was determined. The calculations
were in good agreement with the experimental data. The morphology of the liquid bridges
in a slit pore geometry can be used in various fields such as the packaging of electronic and
micro-electromechanical systems.
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1. Introduction

Investigations on the morphology of liquid bridges created between two rectangular structured
surfaces provide a theoretical basis for the development of electronic packaging processes (Chiang
end Chen, 1998), high-density packaging (Chen et al., 2005), self-assembly processes (Xu et al.,
2006) and micro-electromechanical systems (Raccurt et al., 2004). For instance, the liquid (or
fluid) plays a significant role in formation of liquid bridges and in delamination processes during
soldering of a quad flat non-leaded package onto a printed circuit board. In an environment
with a certain humidity level, the presence of a liquid bridge affects friction, adhesion and
energy dissipation. For this reason, it has a significant effect on micro electromechanical systems
(MEMS) and atomic force microscopy systems (Wei and Zhao, 2007). Therefore, it is very
important and necessary to fully understand the liquid bridge morphology between two parallel
surfaces.

Several studies have considered the contribution of the wetting and shape of an axisymmet-
ric liquid bridge formed across two flat surfaces (Evans et al., 1986; Swain and Lipowsky, 2000;
Valencia et al., 2001; Peng and Li, 2007; Broesch and Frechette, 2012; Broesch et al., 2013; Zhu
et al., 2015). For instance, Swain and Lipowski (2000) investigated wetting phenomena occurring
between one pair of opposite stripes. A bridge can span from a lyophilic stripe belonging to a sur-
face to another one situated on the opposite surface. This generates a force which acts between
the substrates and can be evaluated via 2D analysis. Valencia et al. (2001) investigated mor-
phology of anvil-like shaped liquid bridge phases within a series of slit pores with a hydrophilic
strip. They used a lattice gas model and minimization methods to simulate the mean curvature
radius of the liquid-vapor interface. Broesch and Frechette (2012) performed several experiments
and a series of surface evolver simulations to characterize morphology of liquid bridges confined
within a slit pore of variable height. Their results show that the pinning angle increases with an
increase in the pore height. This is associated with transition in the mean curvature radius of the
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bridge from concave (negative) to convex (positive). Based on three simple geometric arguments
(Broesch et al., 2013), the authors developed a simple formula to predict the pinning angle solely
based on the contact angle, height and width of the bridge. The experimental results reported
in their paper showed that the pinning angle was closely related to the volume. Zhu et al. (2015)
solved differential equations which clarify the relation between capillary forces and the Laplace
pressure of the capillary bridge as a function of the shape during the bridge stretching process.
However, their simulation results have not been experimentally verified.

Previous studies aimed at predicting morphology and capillary forces generated by liquid
bridges via surface evolver simulations (Broesch and Frechette, 2012; Broesch et al., 2013; Zhu
et al., 2015; Peng and Li, 2007; Petkov and Radoev, 2014; Princen, 1970). However, few theo-
retical calculation methods are available to describe the liquid bridges between two slits since
the analytical description of the menisci at the two terminals remains challenging. Moreover,
the relation between the pinning angle and the volume still has to be clarified. In this paper, the
morphology of liquid bridges confined within a slit pore was investigated via an elliptic approxi-
mation. A relation between the pinning angle and properties of the strip (wetting, height, width,
and volume) was proposed. Furthermore, the critical aspect ratio (height/width) at which the
liquid bridge meniscus transitions from concave to convex was obtained. These results provide
the curvature radius of the liquid bridge terminals and the ratio between the volume at both
ends of the liquid bridge and the total volume. The results of the theoretical model are in close
agreement with the experimental data from the previous work.

2. Analytical modeling

In this work, a liquid bridge in a slit consisting of two rectangular flat and parallel plates
separated by a distance H (Fig. 1) is considered. The model is based on three assumptions for
the geometry of the liquid bridge:

• The liquid-air interface can be described by using arcs of circles.

• The liquid at two terminals can be described by a saddle shape, and the cross section along
the horizontal direction can be approximated with an ellipse. The triple contact line has
a fixed plate width but is free to advance or recede along its length.

• Following the Princen (1970) approach, the contribution of surface energy at the two
terminals is neglected.

In Fig. 1, the arc ABC is a contour of the middle of the liquid bridge, the arc ADC is
a contour of the liquid-solid interface. Black represents slits and blue represents liquid bridge,
L is length of the liquid-solid interface, Lx – length of the middle section of the liquid bridge,
W – plate width, Rn – length in the x direction of the saddle-shaped neck, rd corresponds to
the radius of the meniscus at both ends, θ is the contact angle, xm, ym are the coordinates of M
and R1 is the radius of the thinnest part on the side of the liquid bridge.

Based on the Young-Laplace equation (Petkov and Radoev, 2014), the pressure difference
between the inside and outside part of the system at the liquid-air interface (i.e. the meniscus)
can be written as follows

∆pend = −γ

(

2 cos θ

H
−

Rn
(

W

2 −H
1−sinα
2 cosα

)2

)

∆pside = −
2γ cosα

H
(2.1)

Here, ∆p corresponds to the Laplace pressure, α is the pinning angle, and θ is the contact
angle. Rn represents the length along the x direction of the saddle-shaped neck. Since the mean
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Fig. 1. Liquid bridge slit pore geometry: (a) three quarters view, (b) side view, (c) front view, (d) top
view of its right end, (e) side view of the end

curvature is identical for all the points along the liquid bridge profile, the relation between α
and θ can be defined as follows

cos θ = cosα+
HRn

2
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W

2 −H
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)2 (2.2)

The α value can be predicted without defining Rn, which is closely related to the volume of the
liquid bridge. The volume is calculated as follows (details are given in Supporting Information
Appendix)

V =
(

L− 2Rn −H
1− sin θ

cos θ

)

(

WH −
H2

4

π

2 − α− cosα sinα

cos2 α

)

+
πW

2

[

RnH
π − 2θ

2 cos θ
+
H2

4 cos2 θ
(π − 2θ − 2 cos θ)

]

(2.3)

To obtain the unknown parameters, the value of L is the key parameter to define the shape
of the liquid bridge. Since the contribution of two ends is relatively small with respect to the
middle part, it is assumed that the liquid in the middle part grows or shrinks in length while the
cross-section is constant. The lengthening of the liquid bridge results in the wetting of an area
(AC+BD)dLx of the originally nonwetted plates and in the creation of the area (AB+CD)dLx
of the liquid-air surface (Fig. 1b). The variation of the free energy can be expressed as follows

dE = [(AC +BD)(γSL − γSA) + (AB + CD)γLA]dLx (2.4)
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where γSL, γSA and γLA(= γ) are the solid-liquid, solid-air and liquid-air interfacial tensions,
respectively. AB and CD are the liquid-air surfaces and AC and BD are the liquid-solid surfaces.
According to the Young-Dupré equation

γSA − γSL = γ cos θ (2.5)

Then, Eq. (2.4) can be written in the form

dE = [(AB + CD)− (AC +BD) cos θ]γdLx (2.6)

From Fig. 1b, we get AB = CD = 2(π/2−α)rc and AC = BD =W . Then, the free surface
energy change is

dE = [2rc(π − 2α) − 2W cos θ]γdLx (2.7)

The variable rc corresponds to the radius of the meniscus at both sides, and can be defined
as follows

rc =
H

2 cosα
(2.8)

The work done on the liquid bridge dWL results from the pressure difference between the
atmosphere and the liquid

dWL = ∆psidedVmiddle (2.9)

Vmiddle is the volume of the middle part of the liquid bridge (excluding saddle-shaped liquid
volumes at both ends). For the middle part of the liquid bridge, the variation of the energy
associated with the volume is equal to the variation of the work. First, Eq. (2.8) is substituted
into Eq. (2.7), and then Eq. (2.7) and Eq. (2.9) are made equal dE = dWL. Finally, the following
equation is obtained

Lx =
2V cosα

H
(

2W cos θ −H π−2αcosα

) (2.10)

Then L can be expressed as follows

L = Lx + 2Rn +H
1− sin θ

cos θ
(2.11)

Substituting Rn (Eq. (2.2)) and L (Eq. (2,11)) into Eq. (2.3), α can be determined for a
fixed value of H, W , θ and V . All simulations and calculations were performed with Matlab.

3. Numerical solution

3.1. Influence of H on the pinning angle

The pinning angle as a function of height for different volumes V and widths W of the
plate is shown in Fig. 2. When H is small, the calculated pinning angles are almost the same
under different contact angles. However, when H is relatively large, the difference is obvious.
The contact angle has a great effect on the result of the pinning angle when curvature of the
liquid bridge is negative (the profile is convex).
The shape of the liquid bridges was characterized by considering the pinning angle α, length L

and height H. With an increase in height of the plate, the liquid bridge shrinks along the plate
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Fig. 2. Variation of the pinning angle as a function of height. The data points were obtained
experimentally (Broesch and Frechette, 2012). In this case, the surface tension is γ = 51mN/m for a
water-glycerol liquid (Broesch and Frechette, 2012). The solid lines are the results of the simulation

performed in this work considering: (a) θ = 2◦, (b) θ = 10◦, (c) θ = 25◦

surface, and the pinning angle increases. Moreover, the liquid bridge becomes thicker until it
reaches its maximum. The simulation results of the pinning angles based on Eq. (2.2) are in good
agreement with the experimental results. However, both high and low values of the height result
in a less satisfactory agreement between the theoretical and experimental results. The findings
suggest that this deviation arises from two causes: 1) The use of the circular arc approximation
for the contour surfaces of the liquid bridge along its two sides, which implies that the surface
tension effect dominates and that gravitation is negligible. Based on the results from previous
work (Broesch et al., 2013), this approximation induces an error at this scale. 2) The contribution
of the liquid volume at both ends is neglected.

3.2. Influence of contact angle on R1

The calculation results satisfactorily predict the curvature change (from concave to convex
in Fig. 3b) and the dependence on wetting properties. These results follow the same trends as
the results obtained from Surface Evolver simulation by Broesch et al. (2013), see Fig. 5c.

3.3. Influence of H on R1

The evolution of 1/R1 (obtained from Eq. (3.1)) as a function of the H/W ratio is shown in
Fig, 4

R1 =
W

2
−

H(1− sinα)

2 cosα
(3.1)
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Fig. 3. (a) Evolution of R1 for three different contact angles W = 0.5, V = 2.5 (Broesch et al., 2013).
(b) Top view and front view of the liquid bridge

Fig. 4. Trend of 1/R1 curve as a function of the aspect ratio H/W

The function reaches its maximum value and, then, it decreases. The trend of this curve
is similar with that obtained via Surface Evolver simulations by Broesch (Fig. 5c) (Broesch et
al., 2013). The results show that R1 is not constant as a function of height, which cannot be
approximated by W/2. When R1 = W/2 for α = 90

◦, the Laplace pressure transitions from
negative to positive values, and the liquid-air interface at both sides of the bridge changes
from concave to convex (Galaktionov et al., 2017). The major curvature radius rc can then be
approximated to infinity in Eq. (2.7), leading to

[(AB + CD)− (AC +BD) cos θ] = 2H − 2W cos θ = 0 (3.2)

Therefore, we get

H

W
= cos θ (3.3)

For a fixed value of θ, the critical aspect ratio (height/width) can be determined for α = 90◦.
Equation (3.3) is identical to Eq. (2.5) obtained by Broesch et al. (2013) via an experimental
approach (α = 90◦).

3.4. Influence of H on Rn and Vend

In the energy balance equation, Eq. (2.7), the contribution of liquid volume at both ends is
neglected assuming that its volume is small in comparison with the total liquid volume. Figure 5
shows Rn/L and Vend/V ratios as functions of H. For a fixed value of W , the smaller the volume
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is, the more prominent are the two bridge terminals (saddle shape). For a fixed volume, the larger
is W , the more prominent the bridge terminals are. For a rather large value of the liquid bridge
volume, Rn/L remains relatively small. The energy of the liquid-air surface at both terminals is
relatively flat and can be ignored. When volume of the liquid bridge is small, the energy at the
two terminals cannot be ignored. Therefore, there is a discrepancy between the theoretical and
experimental values arises.

Fig. 5. (a) Rn/L as a function of height. (b) Vend/V as a function of height. Vend corresponds to the
saddle-shaped liquid volume at both terminals of the liquid bridge

4. Conclusion

In this paper, an analytical model is presented to describe the liquid bridge morphology in
slit pore geometry. The results were confirmed by experimental data. The relation defining the
effect of the pinning angle of the liquid bridge on the plate width and height as well as the liquid
volume is derived. Furthermore, the critical aspect ratio (height/width) at which the liquid
bridge meniscus transitions from concave to convex is determined for a fixed volume. Since the
shape evolution of the liquid bridge is characterized by a high degree of complexity, further
investigations are necessary to reveal the physics behind it.
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